GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering – SEMESTER – 3 (NEW) – EXAMINATION – Winter-2023

Subject Code: 4331902 Date: 16-01-2024

Subject Name: Engineering Thermodynamics

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & Communication aids are strictly prohibited.
- 5. Use of non-programmable scientific calculator is permitted.
- 6. English version is authentic.

			Marks
Q.1	(a)	Define: a) Open system b) close system c) isolated system and give one example of each	03
닟 욌.1	(왠)	વ્યાખ્યાયિત કરો: a) ઓપન સિસ્ટમ b) બંધ સિસ્ટમ c)આઇસોલેટેડ સિસ્ટમ અને દરેકનું એક ઉદાહરણ આપો	03
	(b)	Explain Zeroth law of thermodynamics and state its applications.	04
	(Ⴁ)	થર્મીડાયનેમિકસનો ઝીરોથ કાયદો સમજાવો અને તેના ઉપયોગો જણાવો.	०४
	(c)	Classify system boundaries and give two examples of each	07
	(ક)	સિસ્ટમની સીમાઓનું વર્ગીકરણ કરો અને દરેકના બે ઉદાહરણો આપો.	၀၅
		OR	
	(c)	Compare the following terms:	07
		a) Point and Path function	
		b) Intensive and Extensive Property	
		c)Heat and work	
	(ક)	નીયેના શબ્દોની તુલના કરો:	၀၅
		a) બિંદુ અને પાથ કાર્ય	
		b) ઇન્ટેન્સિવ અને એક્ટેન્સિવ મિલકત	
	(-)	c) હીટ અને વર્ક	0.2
Q.2	(a)	What is Perpetual motion machine of first kind (PPM-1)?Write various statements of first law of thermodynamic	03
પ્રશ્ન .2	(અ)	પ્રથમ પ્રકારનું પર્પેચ્યુઅલ મોશન મશીન (PPM-1) શું છે? થર્મોડાયનેમિકના પ્રથમ નિયમના વિવિધ નિવેદનો લખો.	63
	(b)	prove that internal energy is a point function	04
	(બ)	સાબિત કરો કે આંતરિક ઊર્જા એક બિંદ્દ કાર્ય છે	०४
	(c)	List the assumptions for the steady flow energy equation and apply	07
		steady flow energy equation for Nozzle and Boiler with sketch.	
	(ક)	સ્થિર પ્રવાહ ઊર્જા સમીકરણ માટે ધારણાઓની યાદી બનાવો અને સ્કેય	૦૭
		સાથે નોઝલ અને બોઈલર માટે સ્થિર પ્રવાહ ઊર્જા સમીકરણ લાગુ કરો.	
		OR	_
Q.2	(a)	Define: Steady Flow, Flow Work, Flow Process	03
પ્રશ્ન.2	(왠)	વ્યાખ્યાયિત કરો: સ્થિર પ્રવાહ, પ્રવાહ કાર્ય, પ્રવાહ પ્રક્રિયા	०३
	(b)	Explain Joule's experiment with neat sketch.	04

	(બ)	સુધડ સ્કય સાથ જુલના પ્રયાગન સમજાવા	०४
	(c)	In a gas turbine unit, the gas flow through the turbine is 15 kg/s and	07
		the power developed by the turbine, is 12000 kW. The enthalpies of	
		the gases inlet and outlet are 1260 kJ/kg and 400 kJ/kg respectively,	
		and the velocity of gases at the inlet and outlet are 50 m/s and 110 m/s	
		respectively. Calculate (i) The rate at which heat is rejected to the	
		turbine, and (ii) The area of the inlet pipe given that the specific	
	(6)	volume of gases at the inlet is 0.45 m3/kg.	
	(ક)	ગેસ ટર્બાઇન યુનિટમાં ટર્બાઇનમાંથી ગેસનો પ્રવાહ 15 kg/s છે અને	၀၅
		ટર્બાઇન દ્વારા વિકસિત પાવર 12000 kW છે. ગેસના ઇનલેટ અને	
		આઉટલેટની એન્થાલ્પી અનુક્રમે 1260 kJ/kg અને 400 kJ/kg છે, અને	
		ઇનલેટ અને આઉટલેટ પર વાયુઓનો વેગ અનુક્રમે 50 m/s અને 110 m/s	
		છે.ગણતરી કરો (i) ટર્બાઇનની ગરમી નકારી કાઢવાનો દર છે, અને (ii)	
		ઇનલેટ પાઇપનો વિસ્તાર.ઇનલેટ પર ગેસનું યોક્કસ પ્રમાણ 0.45 m3/kg છે.	
Q. 3	(a)	Differentiate between Process and cycle.	03
પ્રશ્ન.3	(앤)	પ્રક્રિયા અને યક વચ્ચે તફાવત કરો	0.3
	(b)	With the help of Kelvin-Planck's statement explain concept of PMM-2	04
	(બ)	કેલ્વિન-પ્લાન્કના નિવેદનની મદદથી PMM-2 ની વિભાવના સમજાવો	०४
	(c)	Prove that (COP) $_{\text{H. P}} = 1 + (\text{COP})_{\text{R}}$	07
	(ક)	સાબિત કરો કે (COP) H. P = 1+(COP)R	09
	(-)	OR	90
Q. 3	(a)	Give the statement of Avogadro's and Renault's law.	03
પ્રશ્ન.3	(અ)	એવોગાડ્ડો અને રેનોના કાયદાનું નિવેદન આપો.	0.3
71 81.0	(b)	Differentiate between heat pump and refrigerator with sketch and	04
	(0)	C.O.P equation.	UŦ
	(બ)	સ્કેય અને C.O.P સમીકરણ સાથે હીટ પંપ અને રેફ્રિજરેટર વચ્ચે તફાવત	०४
	(•)	કરો	•
	(c)	An inventor claims that his engine takes 130 KJat temperature 270k	07
	()	and rejects 35 KJ at temperature of 220k and delivers 22 kwh works.	
		Is his engine is theoretically possible?	
	(ક)	એક શોધક દાવો કરે છે કે તેનું એન્જિન 270k તાપમાને 130 KJ લે છે અને	იტ
	(3)	220k તાપમાને 35 KJ રિજેક્ટ કરે છે અને 22 kwh કામ કરે છે. શું તેનું	90
		એન્જિન સૈધ્દાંતિક રીતે શક્ય છે?	
Q. 4	(a)	Write and explain Charles's law for gas	03
Ų. 1 뇌욂.4	(a) (신)	ગેસ માટે યાર્લ્સનો નિયમ લખો અને સમજાવો	03
×3.4	• •		04
	(b)	Prove that Cp – Cv = R સાબિત કરો કે Cp – Cv = R	04 08
	(M)	<u> </u>	07
	(c)	4 kg of air at atmospheric pressure of 3 bar absolute and temperature of 45°C is expanded at constant pressure till its volume becomes four	U/
		times of initial volume. Find: a) change in internal energy b) change	
		in enthalpy c) Final volume d) work done	
	(ક)	3 બાર નિરપેક્ષ અને 450C તાપમાનના વાતાવરણીય દબાણ પર 4 કિગ્રા	იტ
	(-)	હવા સતત દબાણ પર વિસ્તૃત થાય છે જ્યાં સુધી તેનું વોલ્યુમ પ્રારંભિક	•
		વોલ્યુમના યાર ગણું ન થાય. શોધો:	
		a) આંતરિક ઊર્જામાં ફેરફાર b) એન્થાલ્પીમાં ફેરફાર c) અંતિમ વોલ્યુમ d)	
		કાર્ય પૂર્ણ	
		ાવ પૂરા OR	
Q. 4	(a)	Define: a)Perfect Gas b)Quasic Perfect Gasc)Real Gas	03
~· T	(4)	Define, all offeet Gue of Quasic I offeet Guest/iteal Gue	J

뇟욌. 4	(અ)	વ્યાખ્યાયિત કરો: a) પરફ્રેકટ ગેસ b) ક્વોસિક પરફ્રેકટ ગેસ c) વાસ્તવિક ગેસ	63
	(b)	Illustrate the following process on P-V&T-S Diagram: a)Isothermal process b)Throttling Process c)Iso baric d) Polytropic processes	04
	(Ⴁ)	P-V&T-S ડાયાગ્રામ પર નીયેની પ્રક્રિયાનું વર્ણન કરો: a)Isothermal	৽४
	(c)	process b) Throttling process c) Iso baric d)Polytropic processes 0.6 liter gas is at 1 bar absolute pressure and temperature of 40°C.It is	07
		compressed polytropically up to 0.2 liter .If compression process index is 1.3 then find work done and heat transfer during this process. Take	
		cv=0.713 KJ/Kg and R=0.287 KJ/Kg	
	(5)	0.6 લિટર ગેસ 1 બાર સંપૂર્ણ દબાણ અને 40°Cના તાપમાન પર છે.તે0.2 લિટર સુધી પોલીટ્રોપિકલી સંકુયિત છે .જો કમ્પ્રેશન પ્રક્રિયા ઇન્ડેક્સ 1.3 હોય તો આ પ્રક્રિયા દરમિયાન કરવામાં આવેલ કામ અને હીટ ટ્રાન્સફર શોધો. cv=0.713 kj/kg અને R= લો. 0.287 KJ/Kg.	0.9
Q.5	(a)	Write the limitations of air standard cycle	03
પ્રશ્ન.5	(અ)	એર standard સાયકલ મર્યાદાઓ લખો	٥3
	(b)	Statement of Carnot theorem and its corollaries.	04
	(U)	કાર્નોટ પ્રમેય અને તેની કોરોલરીઓનું નિવેદન આપો.	ο γ
	(c)	A hot air engine works on Brayton cycle with pressure ratio of 3. if the temperature before adiabatic compression and expansion are 298	07
		k and 923k. Determine: a)heat supplies b) heat rejected c) work done	
		per kg of air d) thermal efficiency. Take cp=1.0 kj /kgk and cv=0.715 kj/kgk	
	(5)	ગરમ એન્જિન બ્રેટોન યક પર 3 ના દબાણ ગુણોત્તર સાથે કામ કરે છે. જો એડિબેટિક કમ્પ્રેશન અને વિસ્તરણ પહેલાંનું તાપમાન 298 k અને 923 k હોય તો નક્કી કરો: a) ગરમીનો પુરવઠો b) ગરમી નકારી c) હવાના કિલોગ્રામ દીઠ કરવામાં આવેલું કાર્ય d) થર્મલ કાર્યક્ષમતા .cp=1.0 kj/kgkઅને cv=0.715 kj/kgkલો	0.9
		OR	
Q.5	(a)	Classify thermodynamic cycle. state main difference between power producing and power absorbing cycle.	03
પ્રશ્ન.5	(અ)	થર્મોડાયનેમિક યક્રનું વર્ગીકરણ કરો. પાવર પ્રોડ્યુસિંગ અને પાવર શોષક યક્ર વચ્ચે મુખ્ય તફાવત જણાવો.	63
	(b)	Illustrate the following cycle on p-v and t-s diagram and write their efficiency equation: a) otto cycle b) Diesel Cycle	4
	(ၛ)	p-v અને t-s ડાયાગ્રામ પર નીયેના યક્રનું વર્ણન કરો અને તેમના કાર્યક્ષમતા સમીકરણ લખો: a) ઓટો સાયકલ b) ડીઝલ સાયકલ	০४
	(c)	one of the engine manufacturer company claims that his engine works	07
		between highest temperature of 2400°C and lowest temperature is 400°C.if it produces 2.5 kw power during one hour from 0.2 kg/hr of fuel and fuel having calorific value of 45000 kj/kg. Is claim possible	
	(5)	or not? એક એન્જિન ઉત્પાદક કંપની દાવો કરે છે કે તેનું એન્જિન સૌથી વધુ 2400°C અને સૌથી નીયા તાપમાન 400°C વચ્ચે કામ કરે છે. જો તે એક કલાક દરમિયાન 0.2 kg/hr ઇંધણમાંથી 2.5 kw પાવર ઉત્પન્ન કરે છે અને 45000 kj/kg કેલરીફિક મૂલ્યધરાવતું ઇંધણ છે. દાવો શક્ય છે કે નહીં?	၀૭