Sea	ıt No.:	Enrolment No	_
	Diplo	GUJARAT TECHNOLOGICAL UNIVERSITY oma Engineering - SEMESTER-III • EXAMINATION – SUMMER • 2014	
Subject Code: 3330603 Date: 17-06-20 Subject Name: Hydraulics			
	tructio		
	1. 2. 3. 4.	Figures to the right indicate full marks.	
Q.1	(a) (b)	Enlist properties of liquid and explain any three in detail. Convert following. (i) Pressure head of 2.5 m oil of sp.gr. 0.8 to pressure intensity in kN/m². (ii) 108.62 kN/m² to pressure head in m of liquid of sp.gr. 1.4. (iii) Pressure head of 1.8 m of water to pressure head of mercury.	07 02 02 03
Q.2	(a)	(i) A trapezoidal channel has bed width 5 m and side slope 2:1. If the depth of flowing water is 1.8 m, bed slope of the channel is 1:1500 and C is 55, calculate the discharge.(ii)Write the difference between laminar flow and turbulent flow.	04
	(b)	Derive an equation for total pressure and centre of pressure for a plane vertically immersed in water. OR	07
	(b)	A circular plate 1.5 m diameter having a square hole of 0.5 m with one edge parallel to free surface at its centre, immersed vertically in water with uppermost end of the plate lies at a depth of 0.75 m below the free surface. Calculate total pressure on the plate and depth of centre of pressure.	07
Q.3	(a)	(i) The diameter of a pipe increases suddenly from 200 mm to 300 mm. If rate of flow in the pipe is 100 lit/sec, calculate head loss due to sudden expansion.(ii) Explain pitot tube with neat sketch.	04 03
	(b)	 (i) A horizontal venturimeter 16 cm × 8 cm is used to measure flow of an oil of sp. gr. 0.9. If the deflection of mercury in the manometer is 4.0 cm, find the discharge of the oil. Take Constant of venturimeter = 1. (ii) Draw a neat sketch of a venturimeter showing various components of it. 	04
Q.3	(a) (b)	OR Prove Bernoulli's theorem. (i) A discharge of 0.1 m ³ /sec is flowing through a pipe having diameter 300 mm. Considering density of liquid 900 kg/m ³ , viscosity 0.4 NS/m ² , find the type of flow. (ii) Explain in brief continuity equation.	07 04 03
Q.4	(a)	Derive the conditions for most economical (i) Rectangular canal section and (ii) Trapezoidal canal section.	07

A compound pipeline 2000 m long is made up of a pipe of length 900m & 45

cm dia, 600 m & 40 cm dia and remaining length of pipe is of 30 cm dia. This pipeline is required to be replaced by a pipeline of uniform diameter of

pipe and same length of pipeline. Calculate the diameter of pipe.

Explain specific energy diagram in detail.

(b)

Q. 4

07

07

(b)	Explain various minor losses with formulae of each in pipe flow.	07
(a) (b)	Derive an equation for discharge passing over a triangular notch. From a 25 mm dia orifice, jet of water falls 32 cm away and 3 cm down from vena contracta. Calculate Cd, Cc and Cv, if head of water is 1 m and discharge is 1.4 lit/sec.	07 07
(a)	OR Water passes through a right angled triangular notch at a depth of 38 cm. The same quantity of water flowing over a rectangular notch of 78 cm length. Find depth of flow over rectangular notch. Take Cd = 0.59 & 0.62 for triangular and rectangular notch respectively.	07
(b)	Explain in detail hydraulic coefficients and prove $Cd = Cc \times Cv$	07

	ગુજરાતી	
અ	પ્રવાહીના ગુણધર્મોની યાદી બનાવી કોઇ પણ ત્રણ વિગતે સમજાવો.	೦೨
બ	નીચે મુજબ ફેરવો.	
	(i) 0.૮ વિ.ધનતા ધરાવતા પ્રવાહીના ૨.૫ મી દાબશીર્ષને દાબતીર્વતા	9.5
	કીલોન્યુટન ⁄ મી ^ર માં.	95
	(ii) ૧.૪ વિ.ઘનતા ધરાવતા પ્રવાહીની ૧૦૮.૬૨ કીલોન્યુટન/મી ^ર	
	દાબતીર્વતાને દાબશીર્ષ મીટરમાં.	03
	(iii) પાણીના ૧.૮ મી દાબશીર્ષને પારાના દાબશીર્ષમાં.	
અ	(i) એક સમલંબક કેનાલની પાચાની પહોળાઇ ૫ મી અને બાજુનોઢાળ ૨:૧	٥٧
	છે. જો વહેતા પાણીની ઉંડાઇ ૧.૮ મી, કેનાલના તળિયાનો ઢાળ૧:૧૫૦૦	
	અને Cની કિંમત ૫૫ હોય તો નિકાસની ગણતરી કરો.	
	(ii) પટલ પ્રવાહ અને વિક્ષુબ્ધ પ્રવાહ વચ્ચેનો તફાવત લખો.	03
બ	પાણીમાં ઉભી ડુબાડેલી સપાટી માટે કુલ દબાણ અને દાબકેન્દ્રની ઉંડાઇ માટેનું	0.9
	મૂત્ર તારવો.	
	 અથવા	
બ	૧.૫ મી વ્યાસ ધરાવતી ગોળાકાર સપાટી કે જેના કેન્દ્રમાં ૦.૫ મી માપનું ચોરસ	೦೨
	કાણું કે જેની એક ધાર મુક્ત સપાટીને સમાંતર છે તેને પાણીમાં એવી રીતે ઉભી	
	ડુબાડેલી છે જેથી તેની સૌથી ઉપરની ધાર મુક્ત સપાટીથી ૦.૭૫ મી ઉંડાઇ એ	
	રહે. સપાટી પર લાગતું કુલ દબાણ અને દાબકેન્દ્રની ઉંડાઇ શોધો.	
รท	(1) એક મળીની વ્યાસ ૨૦૦ મીમી શી અગામક વધી ૩૦૦ મીમી શાંગ છે. જો	ΟX
		03
	(ii) the sugar that moto from the total.	03
બ	(i) ૧૬ સેમી × ૮ સેમી માપનું ક્ષૈતિજ વેન્યુરીમીટર ૦.૯ વિ.ધનતા ધરાવતા	٥٧
	(a) (b) (a) (b) અ બ બ અ	(a) Derive an equation for discharge passing over a triangular notch. From a 25 mm dia orifice, jet of water falls 32 cm away and 3 cm down from vena contracta. Calculate Cd, Cc and Cv, if head of water is 1 m and discharge is 1.4 lit/sec. OR (a) Water passes through a right angled triangular notch at a depth of 38 cm. The same quantity of water flowing over a rectangular notch of 78 cm length. Find depth of flow over rectangular notch. Take Cd = 0.59 & 0.62 for triangular and rectangular notch respectively. (b) Explain in detail hydraulic coefficients and prove Cd = Cc × Cv ***********************************

પ્રવાહીનો પ્રવાહ માપવા માટે વપરાય છે. જો મેનોમીટરમાં પારાનું વિચલન

		૪.૦ સેમી હોય તો પ્રવાહીનો નિકાસ શોધો. વેન્યુરીમીટર નો અયળાંક = ૧ લો. (ii) વેન્યુરીમીટરની સ્વચ્છ આકૃતિ દોરી તેના વિવિધ ભાગો દર્શાવો.	03
		અથવા	
પ્રશ્ન. ૩	અ	બર્નોલીનું પ્રમેય સાબિત કરો.	೦೨
	બ	(i) 300 મીમી વ્યાસની નળીમાંથી 0.૧ મી³/સેકંડનો નિકાસ થઇ રહ્યો છે. પ્રવાહીની ધનતા ૯૦૦ કીગ્રા/મી³ અને શ્યાનતા 0.૪ ન્યુટન.સેકંડ/મી² લઇ પ્રવાહીનો પ્રકાર શોધો. (ii) સાતત્ય સમીકરણ ટૂંકમાં સમજાવો.	03
પ્રક્ષ. ૪	અ	(i) લંબચોરસ કેનાલ સેક્શન અને (ii) સમલંબક કેનાલ સેક્શન માટે સૌથી કરકસરયુક્ત આડછેદ માટેની શરતો સાબિત કરો.	೦೨
	બ	૨૦૦૦ મી લંબાઇની કમ્પાઉન્ડ પાઇપ જેમાં ૯૦૦ મી લંબાઇ, ૪૫ સેમી વ્યાસની, ૬૦૦ મી લંબાઇ, ૪૦ સેમી વ્યાસની અને બાકીની લંબાઇ ૩૦ સેમી વ્યાસની છે. આ પાઇપલાઇનને એકસરખા વ્યાસની પાઇપ અને તેટલી જ લંબાઇની પાઇપલાઇન વડે બદલવાની છે. સમકક્ષ પાઇપનો વ્યાસ ગણો.	0.9
		અથવા	
પ્રશ્ન. ૪		સ્પેસિફિક એનર્જી રેખાયિત્ર વિગતે સમજાવો.	೦೨
	બ	પાઇપ પ્રવાહમાં થતા વિવિધ ગૌણ વ્યય દરેકના સૂત્ર સાથે સમજાવો.	೦೨
પ્રશ્ન. પ	અ	ત્રિકોણાકાર ખાંય પરથી પસાર થતા નિકાસનું સૂત્ર સાબિત કરો.	೦೨
	બ	રપ મીમી વ્યાસના મુખરંધ્રમાંથી પાણીની ધાર વેનાકોંટ્રાક્ટાથી ૩૨ સેમી દુર અને ૩ સેમી નીચે પડે છે. જો પાણીનો શીર્ષ ૧ મી અને નિકાસ ૧.૪ લીટર/સેકંડ હોય તો C_d , C_c અને C_v ની ગણતરી કરો. અથવા	0.9
પ્રશ્ન. પ	અ	કાટકોણ ત્રિકોણાકાર ખાંચ પરથી ૩૮ સેમી શિર્ષથી પાણી વહે છે. તેટલા જ જથ્થામાં પાણી ૭૮ સેમી લાંબી લંબચોરસ ખાંચ પરથી વહે છે. લંબચોરસ ખાંચ પરથી વહેતા પાણીની ઉંડાઇ શોધો. ત્રિકોણાકાર અને લંબચોરસ ખાંચ માટે Cd નું મુલ્ય અનુક્રમે 0.59 અને 0.62 લો.	0.9
	બ	હાઇડ્રોલિક ગુણાંકો વિગતે સમજાવો અને $C_{ m d} = C_{ m c} imes C_{ m v}$ સાબિત કરો.	೦೨
